Original Article
Abnormal expression of NSF, α-SNAP and SNAP23 in pulmonary arterial hypertension in rats treated with monocrotaline

Hong-Liang Zhang, Zhi-Hong Liu, Qin Luo, Yong Wang, Zhi-Hui Zhao

State Key Laboratory of Cardiovascular Disease, Center for Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, People’s R China

Received November 1, 2014; Accepted January 21, 2015; Epub February 15, 2015; Published February 28, 2015

Abstract: Background: Recent researches have shown that dysfunctional intracellular vesicular trafficking exists in pulmonary arterial hypertension (PAH). However, the expression of proteins involved in intracellular vesicular trafficking in pulmonary vasculature in PAH remains unclear. Objective: To elucidate possible roles of proteins involved in intracellular vesicular trafficking in the development of PAH in rats treated with monocrotaline, changes in the expression of N-ethyl-maleimide-sensitive factor (NSF), α-soluble NSF attachment protein (α-SNAP) and synaptosome-associated membrane protein (SNAP) 23 were examined together with expression of caveolin-1 (cav-1), endogenous nitric oxide synthase (eNOS), type 2 bone morphogenetic receptor (BMPR2) and cellular apoptosis. Methods: The mRNA expression was investigated by real time-PCR and protein expression by immunoblot method in rat lung. Caspase-3 was used as an indicator of cellular apoptosis and examined by immunoblot method. Results: During the development of PAH, mRNA and protein expression of NSF, α-SNAP and SNAP23 all significantly increased before pulmonary arterial pressure started to increase, then all significantly decreased when PAH established. The expression of eNOS and BMPR2 changed similarly, while the mRNA and protein of cav-1 both downregulated after monocrotaline treatment. Caspase-3 was also increased after exposure to monocrotaline. Conclusions: Since the expression of NSF, α-SNAP and SNAP23 changed greatly during the onset of PAH and accompanied with abnormal expression of eNOS, BMPR2 and cav-1 and with enhanced cellular apoptosis, NSF, α-SNAP and SNAP23 appear to be associated with the development of PAH in rats treated with monocrotaline.

Keywords: Pulmonary arterial hypertension, monocrotaline, intracellular vesicular trafficking

Introduction

Pulmonary arterial hypertension (PAH) is a syndrome resulting from restricted flow through the pulmonary arterial circulation resulting in increased pulmonary vascular resistance and ultimately in right heart failure [1]. Prior to 2003, primary pulmonary hypertension was used to describe idiopathic PAH and familial PAH. The pathology of PAH is characterized by abnormal expansions of endothelial cells, medial hypertrophy, and adventitial thickening of pulmonary arteries which lead to reduced arterial lumen, cycles of thrombosis and recanalization, and eventually to progressive right ventricular hypertrophy and cardiac failure [2, 3]. Before the era of target therapy (Endothelin antagonist, prostacyclin analogue, phosphodiesterase inhibitor), the medical management of PAH was directed at vasodilation and anticoagulation, the median survival for PPH is only 2.8 years, and the 1-, 3-, 5-year survival rates were 68%, 48%, 34% respectively [4]. Even with modern target therapy, for patients with idiopathic/familial PAH, the median survival is 7 years, and 1-, 3-, 5-, and 7-year survival rates were 91%, 74%, 65%, and 59%, respectively [5].

The past studies showed that the hallmark plexiform lesions in PAH consisted of enlarged endothelial cells, fibroblasts, and smooth muscle cell elements, which contained increased endoplasmic reticulum, Golgi stacks, vacuolation and Weibel-Palade bodies [6-8]. These
Abnormal expression of NSF, α-SNAP and SNAP23

findings also applied to experimental PAH models [9-12]. Recent researches observed trapping of various vesicle trafficking tethers, soluble N-ethyl-maleimide-sensitive factor attachment proteins (SNAPs) and membrane proteins which serve as SNAP receptors (SNAREs), loss or reduction of cell surface protein from plasma membrane (e.g. caveolin-1 (cav-1), endogenous nitric oxide synthase (eNOS), type 2 bone morphogenetic receptor (BMPR2)) with the aberrant sequestration in the endoplasmic reticulum, Golgi apparatus and in cytoplasmic vesicles in PAH lesions. This resulted in reduced cell surface/caveolar production of NO, hypo-S-nitrosylation of the trafficking mediator proteins, hyperactivation of STAT3 and defect in BMP/Smad signaling, imbalance of cellular proliferation and apoptosis [13-15]. All these findings points to dysfunctional intracellular vesicular trafficking within the cellular elements in the arterial lesions in PAH. However, the expression of proteins associated with intracellular vesicular trafficking is unclear in PAH. In present research, changes in the temporal expression of proteins associated with intracellular vesicular trafficking (N-ethyl-maleimide-sensitive factor (NSF), α-SNAP and SNAP23 (here SNAP stands for synaptosome-associated membrane protein, belongs to SNAREs) were investigated in rats treated with monocrotaline (MCT) for 1-21 days together with changes in the expression of membrane proteins (cav-1, eNOS and BMPR2) and cellular apoptosis.

Methods

Animal

Seventy-eighty pathogen-free, 6-7 week old, male Sprague-Dawley rats (body weight, 160-180 g) (Vital River Lab Animal Technology Co., Ltd., Beijing, China) were studied. All protocols and procedures were reviewed and approved by the Institutional Animal Use Committee of Fuwai Hospital & Cardiovascular Institute, Chinese Academy of Medical Sciences & Peking Union Medical College in accordance with the Regulations for the Administration of Affairs Concerning Experi-
mental Animals approved by the State Council and promulgated by the State Science and Technology Commission of China. The investigation conformed to the Guidelines for the Care and Use of Laboratory Animals, as published by the National Academy Press (NIH Publication No. 85-23, revised 1985).

Animal treatment

Rats were equally randomized to 6 groups, in each group 9 rats were given MCT (Sigma, St. Louis, MO, USA) and 4 rats were given same amount of normal saline as controls intraperitoneally (60 mg/kg). MCT was dissolved in distilled water, adjusted to pH 7.40 with 0.5 N HCl and injected intraperitoneally. Then rats in each group were randomly sacrificed on Day 1, Day 2, Day 3, Day 7, Day 14 and Day 21 after injection, respectively.

Hemodynamic studies and tissue preparation

Rats were anesthetized by intraperitoneal injections of chloral hydrate (2.5 mg/kg), placed in the supine position, intubated and ven-

Figure 4. The mRNA expression of NSF (A), α-SNAP (B), SNAP23 (C), BMPR2 (D), caveolin-1 (E) and eNOS (F) were analyzed by semiquantitative Real Time PCR. The rats were harvested on the 1, 2, 3, 7, 14, 21 day after MCT or normal saline treatment. The data represent results of 3 separate experiments. *P < 0.05 vs. control. #P < 0.01 vs. control.
Abnormal expression of NSF, α-SNAP and SNAP23

Utilated with room air at 60 breaths/min with a pressure-cycled rodent ventilator (Zhe Jiang Medical University Laboratory Apparatus Factory, Hangzhou, China). After sternal incision, a percutaneous needle (27 gauge) connected with transducer and flushed with heparinized saline was directly punctured into pulmonary artery to measure pulmonary pressure. The correct positioning of the needle in pulmonary artery was confirmed by pressure wave before pulmonary arterial pressure was recorded. After exsanguination, the lungs were perfused with heparinized saline through the needle; then the right lung, right ventricle, and left ventricle plus septum were collected. The lungs were axially sectioned, rapidly frozen in liquid nitrogen and stored at -80°C until analysis and determination of total cellular RNA and tissue protein. Right ventricle and left ventricle plus septum were weighted. Development of pulmonary hypertension was determined by the pulmonary arterial pressure and the weight ratio of the right ventricle over the left ventricle plus septum [RV/(LV+S)].

Real time PCR analysis

The mRNA expression of vesicular trafficking proteins (NSF, α-snap, SNAP 23) and plasma membrane proteins (eNOS, Cav-1 and BMPR2.) was evaluated with semiquantitative Real Time-PCR. Total RNA was isolated from rat lungs with the SV Total RNA Isolation System (Z3100, Promega, USA), and then the RNA sample was reverse transcribed with the Reverse Transcription System (A3500, Promega, USA) in 20 μl according to the manufacturer’s instructions. PCR was conducted at linearity phase of the exponential reaction for each gene. The cDNA was amplified using SYBR® Green Realtime PCR Master Mix (QPK-201, TOYOBO, Japan) in 20 μl according to the manufacturer’s instructions with the following program: 1 cycle of 95°C for 60 s; 40 cycles of 95°C for 15 s and 56°C for 60 s. The amplification of the target genes was conducted on a 7300 real-time PCR system (Applied Biosystems) and monitored every cycle by SYBR-green fluorescence.

Western blotting

For each assay, frozen lung tissues were homogenized by cooled RIPA protein extract solution (30 mM Tris, 150 mM NaCl, 1 mM benzylsulfonyl fluoride, 1 mM Na3VO4, 1% Nonidet P-40, 10% glycerol, and pH 7.5) with PMSF (100 mM), then centrifugation at 12,000 g for 20 min at 4°C, the concentration of protein was quantified by BCA protein assays. Equal amounts of protein (50 μg/lane) were separated by electrophoresis through 12% sodium dodecyl sulfate polyacrylamide gel (60 V for 2 h) in a Tris/HCl buffer system, and transferred to nitrocellulose membranes (Millipore, USA) using an semi-dry electrobobling apparatus (Bio-Rad, USA) for 25 min at 25 V, then blocked the membrane with 5% skim milk for 1 h at room temperature. Then nitrocellulose membranes were incubated with monoclonal mouse antibody against NSF (1:500, Abcom Inc.), α-SNAP (1:500, Santa Cruz BioTechnology, Inc.), polyclonal goat antibody against SNAP23 (1:100, Santa Cruz BioTechnology, Inc.), BMPR2 (1:100, BD Biosciences), Cav-1 (1:1000, LifeSpan BioSciences, Inc.), eNOS (1:100, BD Biosciences) or polyclonal mouse antibody against caspase3 (1:500, all from Santa Cruz BioTechnology, Inc.) at 4°C overnight. After incubation, membranes were washed in PBS, and probed with secondary antibodies conju-
Abnormal expression of NSF, α-SNAP and SNAP23

Numerical data are presented as means ± standard deviation. Comparisons between groups were made with Student’s t-test. Differences among groups were tested by one-way ANOVA. Two sided P values were used. A value of P < 0.05 was considered significant.

Results

Pulmonary arterial hypertension was successfully established

At baseline the body mass did not differ in all the 6 groups (Day 1 to Day 21) (F = 2.33, P = 0.051), while the body mass was significantly lower in MCT group than in controls from Day 2 after injection, which means that MCT lead to

Figure 6. Cellular apoptosis was analyzed by immunoblot analysis. The rats were harvested on the 1, 2, 3, 7, 14, 21 day after MCT or normal saline treatment. Compared to controls, The 20- and 17-kDa bands for the active form and a 32-kDa band for the inactive form of caspase-3 was increased after exposure to MCT and was highest on days 14 and 21.

![Graphs showing the expression levels of NSF, α-SNAP, SNAP23, eNOS, and Caspase-3 over time post-MCT or saline treatment.](image-url)
growth retardation of the rats (Figure 1). Compared to controls, the mean pulmonary arterial pressure progressively increased from Day 7 after injection and was highest on Day 21 (Day 7: 14.83 ± 1.54 mm Hg vs. 12.13 ± 1.44 mm Hg, P = 0.013; Day 14: 18.56 ± 2.53 mm Hg vs. 13 ± 1.35 mm Hg, P = 0.002; Day 21: 22.57 ± 3.25 mm Hg vs. 13.38 ± 2.17 mm Hg, P = 0.001) (Figure 2). While measurement of ventricular weights revealed that the ratio of RV/(LV+S) gradually elevated from Day 14 after injection and was also highest on Day 21 (Day 14: 0.38 ± 0.09 vs. 0.25 ± 0.06, P = 0.024; Day 21: 0.5 ± 0.09 vs. 0.27 ± 0.02, P < 0.001) (Figure 3), which indicated that the development of PAH results in a compensatory hypertrophy of the right ventricle.

Time courses and effects of MCT on mRNA expression of NSF, α-SNAP, SNAP23, BMPR2, cav-1 and eNOS

Semiquantitative Real Time-PCR analysis was utilized to detect changes in mRNA expression of NSF, α-SNAP, SNAP23, BMPR2, Cav-1 and eNOS in rat lung tissues after exposure to MCT (Figure 4). Housekeeping gene glyceraldehyde-3 phosphate dehydrogenase (GAPDH) were used as an internal control. Compared with control rats, NSF increased from the second day after exposure to MCT, was highest on the 7th day (9.2 fold, P < 0.001), then significantly decreased from the 14th day to a level hardly detectable. α-SNAP level increased on Day 1 (3 fold, P = 0.004) and Day 2 (1.7 fold, P = 0.019), returned to control levels from Day 3, then greatly decreased from Day 14. The mRNA expression of SNAP23 was approximately 2-3 fold greater on the first 3 days after MCT treatment, then started to decrease from Day 7, and was hardly detected on Day 14 and 21. The mRNA expression of BMPR2 did not change significantly during Day 1-7 (0.7-1.2, P = 0.05-0.23), then significantly decreased from Day 14-21. Except for the first day, cav-1 gradually decreased during exposure to MCT to 25% of the control level on Day 21. eNOS was elevated on Day 3 and 7 (1.4-3.7 fold), started to decline from Day 14 and hardly detected on Day 21.

Time courses and effects of MCT on protein expression of NSF, α-SNAP, SNAP23, BMPR2, cav-1 and eNOS

We identified 76 kDa bands for NSF, 38 kDa bands for α-SNAP, 23 kDa bands for SNAP23, 130 kDa bands for BMPR2, 22 kDa bands for cav-1 and 140-kDa bands for eNOS proteins in lung tissue from rats by Western immunoblotting analysis (Figure 5). Compared with controls, NSF increased during exposure to MCT on Day 1-3 (1.2-2.3 fold, P < 0.05), then significantly decreased from Day 7 and hardly detected after 14-21 days. α-SNAP levels were 1.2-2.2 fold increased from 1 to 7 days after MCT treatment (P < 0.01), then significantly decreased from the 14th day after MCT treatment. SNAP23 protein levels significantly increased on the first 7 days (approximately 3-36 fold, P < 0.05), decreased to control level on the 14th day and then significantly reduced on Day 21. BMPR2 level was upregulated by 1.7-2.3 fold on Day 1-3 (P ≤ 0.01), returned to control level on Day 7 (P = 0.41), then significantly reduced (P < 0.01). The expression of cav-1 was downregulated from the second day after MCT treatment (0.6-0.9 fold, P < 0.01), except on the 3 day (P = 0.06). The protein level of eNOS elevated 1.2-1.6 fold during Day 1 to 7 (P < 0.05) except on the third day (0.98 fold, p = 0.38), then reduced by 34-50% after 14-21 days (P < 0.01).

Time course and effects of MCT on activation of caspase-3

As we know, abnormal apoptosis plays an important role in the pathogenesis of PAH. In order to analyze the relationship between the expression of vesicular trafficking protein and cellular apoptosis, we next investigated the expression of caspase-3, which is known as an important effector enzyme for apoptosis, by Western blot analysis. The 20- and 17-kDa bands for the active form and a 32-kDa band for the inactive form of caspase-3 were constitutively expressed in rat lungs (Figure 6). Compared to controls, the active form of caspase-3 was increased after exposure to MCT and was highest on days 14 and 21.

Discussion

The transportation of proteins to the target subcellular compartments and organelles is mediated by intracellular membrane-vesicular trafficking and subsequent membrane fusion, which includes tether proteins, NSF, SNAPs and SNAREs [16-18]. The process is complicated. Briefly, tether proteins bring cargo vesicle and target membranes together, then respective
Abnormal expression of NSF, α-SNAP and SNAP23

membrane is fused after formation of a complex by the SNARE proteins on the cargo vesicle and target membranes, subsequently SNAP protein (usually α-SNAP) recruits NSF to disassemble the complex for the next transportation [19-21]. Dysfunctional vesicular trafficking is the underlying cause of several diseases, such as Parkinson's disease, Alzheimer's disease, lysosomal storage diseases [16, 22]. Recent studies reported dysfunctional vesicular trafficking as a prelude to the development of PAH. We conducted this study to demonstrate the temporal expression of NSF, α-SNAP and SNAP23, together with the expression of eNOS, cav-1 and BMPR2 in lungs from normal rats and animals treated with MCT. Our observations showed that NSF, α-SNAP and SNAP23 all upregulated preceding the appearance of PAH and downregulated when the pulmonary arterial pressure increased both at mRNA and protein level, and the similar changes appeared in the expression of BMPR2 and eNOS; while cav-1 was merely downregulated both in mRNA and protein expression. Caspase-3 was also increased after exposure to monocrotaline and greatly increased when PAH established.

NSF is an ATPase required for the disassembly of all SNARE complexes and can be covalently modified by NO-mediated S-nitrosylation to lose the ability to disassemble SNARE complexes [23], α-SNAP is essential for the recruitment of NSF to SNARE complex [28, 29, 32]. SNAP23 forms clusters with syntaxin-4 in the plasma membrane served as the fusion sites for caveolae during exocytosis [24]. In experimental PAH, it was found that diverse tethers, SNAREs and SNAPs were trapped in Golgi together with eNOS, cav-1 and BMPR2, while NSF was found to be largely sequestered in an intracellular location separate from the Golgi, which suggested dysfunction in the disassembly step in vesicular trafficking [14, 15]. In our study, NSF, α-SNAP and SNAP23 were uniformly upregulated from the first day after administration of MCT, at a time largely preceding development of PAH, then started to decrease accompanied with increased pulmonary arterial pressure from the 7th or 14th day. These data suggested that such changes might lie in the pathogenesis of PAH and were not a consequence of increased pulmonary arterial pressure. The effect of upregulation of NSF, α-SNAP and SNAP23 is not clear. It was found that exoge-
BMPR2 was downregulated from the 14th day after MCT treatment both at the mRNA and protein levels.

Caveolae are 50-100 nm invaginations of the plasma membrane that are enriched in cholesterol and sphingolipids. Caveolins are the structural proteins essential for the formation of caveolae in lipid raft domains. Caveolin-1 is highly expressed in endothelial cells, adipocytes, and smooth muscle cells. It was found that cav-1 was reduced in the cells in plexiform lesions in patients with PAH and rats treated with MCT, and cav-1/- mice spontaneously developed pulmonary hypertension and dilated cardiomypathy [32, 33]. Loss of cav-1 from cell surface inversely related with hyperactivation of promitogenic and antiapoptotic PY-STAT3 and ERK1/2 signaling and DNA synthesis and with development of PAH BMPR II is located in lipid rafts, including caveolae [34], and cav-1 can regulate the caveolar localization and transcriptional activation function of BMPR II [35]. Reduction in cav-1 or a dominant-negative mutant of cav-1 can reduce BMPR II plasma membrane localization, decreased BMP-dependent Smad phosphorylation and gene regulation [49]. We also found that cav-1 was downregulated in MCT treated rats, which may promote the formation of PAH through activation of PY-STAT3 and ERK1/2 signaling pathway and decreased BMP-Smad signaling pathway.

NO level is reduced in the pulmonary arterial walls in human and experimental PAH, however the levels of eNOS have been variably reported as unchanged, decreased, or even increased [36, 37]. In this study the expression of eNOS was upregulated at first and downregulated after pulmonary arterial pressure started to increase. The extracellular NO derives from cell-surface caveolar eNOS, while eNOS is found lost from cell surface caveolae and trapped in intracellular compartment, such as Golgi and endoplasmic reticulum [38]. NO can still be generated by eNOS but cannot reach the extracellular space leading to the reduced NO in the pulmonary arterial vasculature. The intracellular NO causes S-nitrosylation of NSF and further inhibits vesicular trafficking in a self-reinforcing inhibitory loop [36]. According to these findings, we speculate that increased eNOS may inhibit NSF leading to exacerbation of dysfunctional vesicular trafficking, and decreased eNOS level leads to shortage of NO which promotes the elevation of pulmonary arterial pressure.

In summary, we found that the expressions of NSF, α-SNAP and SNAP23 were upregulated preceding the formation of PAH and downregulated after PAH established both at mRNA and protein levels in MCT treatment rats, and accompanied with abnormal expression of BMPR2, cav-1 and eNOS and with enhanced cellular apoptosis. NSF, α-SNAP and SNAP23 appear to be associated with the development of PAH and their roles worth further study.

Acknowledgements

This study was supported by National Natural Science Foundation of China (Grant No. 308-71056).

Disclosure of conflict of interest

None.

Address correspondence to: Dr. Zhihong Liu, State Key Laboratory of Cardiovascular Disease, Center for Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beilishi Road 167, Fuwai Hospital, Xicheng District, Beijing 100037, People’s R China. Tel: +86 010 88396589; Fax: +86 010 88396589; E-mail: 330954476@qq.com

References

Abnormal expression of NSF, α-SNAP and SNAP23

[23] Matsushita K, Morrell CN, Cambien B, Yang SX, Yamauchi M, Bao C, Hara MR, Quick RA, Cao W, O’Rourke B, Lowenstein JM, Peysner J, Wagner DD and Lowenstein CJ. Nitric oxide regulates exocytosis by S-nitrosylation of N-ethylmaleimide-sensitive factor. Cell 2003; 115: 139-150.

[28] Xu F, Mukhopadhyay S and Sehgal PB. Live cell imaging of interleukin-6-induced targeting of
Abnormal expression of NSF, α-SNAP and SNAP23

[34] Ramos M, Lame MW, Segall HJ and Wilson DW. The BMP type II receptor is located in lipid rafts, including caveolae, of pulmonary endothelium in vivo and in vitro. Vascul Pharmacol 2006; 44: 50-59.

